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1 Local Volatility Surface

1.1 Introduction

Consider put or call options on a given underlying with, for the time being,
the same expiry date but with different strikes. In the classical Black-Scholes
framework, you obtain the fair prices of these options by putting the same
volatility into the Black-Scholes formulae for all these options. However, in
reality it is observed that different strike prices imply different volatilities. If
you plot these implied volatilities against the strike prices, the shape of the
curve may be like a smile, which leads to the name ”volatility smile”. In equity
markets, the implied volatilities often increase with decreasing strike prices.
This may be explained by market participants’ fear of market crashes which
makes put options with low strikes more valuable. To recover the shape of the
implied volatility, one possibility is that in the random walk for the underlying,
the volatility does not only depend on t, but also on S.

dS(t) = pS(t)dt + o(S,t)SdW

This is the concept of local volatility.

Identifying the local volatility surface from market prices of vanilla options is an
ill-posed problem which needs to be treated with care in order to avoid numeri-
cal instabilities. Dupire (1994) showed that the identification of local volatility
is as ill-posed as two times differentiation. For regions deep in the money or
deep out of the money, it is even worse. Within UnRisk, the following sections
describe how to get smooth surfaces for local volatility.

1.2 The mathematics behind the calibration

As a model for the evolution of a financial asset Sy, we consider a generalized
Black-Scholes model proposed in Derman & Kani (1994), i.e.,

dS(t) = (r(t) — d(t))S(t)dt + o (S, t)SAW; (1)

where r(t) denotes the interest rate, d(t) is the dividend yield, and &(S,t) is
the local volatility function. The stochastic process (1) is driven by a Brownian
motion with increments dW;. Using no-arbitrage arguments, it can be shown (cf.
e.g., Wilmott (1998)) that the fair price C(K,T)of a European Call option with
strike K and maturity T as a function of time t and value S of the underlying
solves the Black-Scholes equation

Cy + %0252033 +(r—d)Cs—rC=0 (2)

C(T,S) = maz(S — K,0) (3)

Appropriate boundary conditions have to be added to (2), (3), in order to make
the problem uniquely solvable.



1.3 The calibration problem

While the dividend yield d(t) and the interest rate r(t) can be assumed to be
given by the market, or to be observable from other financial instruments, the
local volatility function o(S,t) has to be chosen in such a way that quoted market
prices CET are matched, i.e.,

cf = ¢FiTi(t = 0,5) (4)

or all strikes K; and maturities T}.

Finding the volatility surface (S, t) such that quoted market prices KT are
matched by the solution to the Black-Scholes equation (2) corresponds to an
inverse coefficient problem for a parabolic equation. Similar problems appear
in many parameter identification problems in mathematical physics, cf., e.g.,
Binder et al. (1990), Burger et al. (1999), Engl & Kiigler (2002) for some
examples. Usually,parameter identification problems governed by partial differ-
ential equations are ill-posed in the following sense:

e a solution may not exist
e the solution (if it exists) may not be unique

e the solution does not depend on the data in a stable way (here option
prices).

The last property implies that in principle arbitrarily large errors in the recon-
structed volatility may arise from arbitrarily small perturbations in the data.
In order to solve the inverse problem (4) in a reasonable way, so-called regular-
ization methods have to be used, cf. Engl et al. (1996, 2nd edition 2000) and
B.Kaltenbacher et al. (2008) for an overview over regularization of inverse prob-
lems. A classical approach for solving nonlinear inverse problems is Tikhonov
regularization: Denoting by F the operator which maps a volatility surface o to
the corresponding option values (via solution of (2),(3) for different strikes and
maturities), a regularized solution (volatility surface) can be defined by

1F(0) = Cul[? + allo® — o2]] — min ()

see Egger & Engl (2005). Here, C, = {C£""} denotes the collection of data
(quoted prices),o, is an appropriate a-priori guess for a solution (e.g., the
Black76 vola surface), and the regularization parameter o balances between
fit to the data and stability. An important step towards a fast solution of the
optimization problem (5) is that the option price as function of strike and ma-
turity also satisfies the so-called Dupire equation, cf. Dupire (1994), namely

2
MKQC’KK —(r=d)Ck —dC =0 (©)

—Cr +
Hence F(o) can be evaluated by solving a single partial differential equation.
For the solution of the minimization problem (5), any reasonable descent algo-
rithm can be used. Gradients, i.e., F' x(C, — F(0)), can be evaluated efficiently
via adjoint methods, and hence the calculation of a gradient can be performed



by another solution of a partial differential equation. For a faster minimiza-
tion of (5), Newton type methods are widely used. The regularized, linearized
equation, which has to be solved in each step of a Newton type method reads

[F'(0)" F'(0) + alldo = [F'(0)]*[Cs = F(0)] = a(0® - 07) (7)

An approximate solution of this equation can for instance be efficiently realized
by some preconditioned conjugate gradient algorithm. For an iterative solution
of (7) only application of F’(0) and F'*(0) to certain elements of a vector space
are required. This operations again can be realized by solving partial differential
equations similar to (2) and (7).

1.4 Implementation

Within the UNRISK PRICING ENGINE, the following combination of methods
is used to efficiently solve the calibration problem:

e The partial differential equations (2) respectively (7) are discretized by a
finite difference method combined with a Cranck-Nicolson scheme for the
time integration.

e In order to keep the dimension of the problem relatively small, the volatil-
ity surface is discretized on a rougher grid (taking into account the strikes
and maturities of available option prices).

e Tikhonov regularization is used for regularization of the calibration prob-
lem. Additionally, a positivity constraint on the squared volatilities is
imposed, i.e., 0> > 0,45, > 0. The problem (time horizon, spot price
of the underlying) is scaled to standard values. In this way, a reason-
able choice of a regularization parameter can be made independent of the
problem.

e For minimization of (5) a Newton-CG algorithm is used, i.e., the regular-
ized Newton systems (7) are solved approximately by a conjugate gradient
algorithm. The outer Newton iteration is stopped if

— the discrepancy in observed and reconstructed option prices D =
maz[(CL" — CKoTi(t = 0, 8,)] is sufficiently small,
— a maximal number of iterations is reached,

— the residual D is increased during the iteration.

1.5 Local FX Volatility Surface

The treatment of a local volatility surface for fx derivatives is the same as it
is for equity derivatives. A local fx volatility surface is calibrated due to given
implied volatilities of vanilla fx options with varying strike fx rates and different
remaining lifetimes.



2 Heston Model

2.1 Introduction

The stock price process in the Heston Stochastic Volatility model (Heston
(1993)) follows the Black Scholes SDE in which the volatility is behaving stochas-
tically over time:

dSy = (ra(t) — ry(1))Spdt + /v SedW} (8)

where r4 denotes the domestic yield curve, ry denotes the foreign yield curve
or the dividend yield curve and v denotes the stock price variance. The term
\/v¢ ensures that the volatility in the stock price process is non negative. In
the Heston model the squared volatility is stochastic and follows the classical
Cox-Ingersoll-Ross (CIR) process:

dvy = k(0 — v?)dt + o\ vy dW? vg >0 9)
dW} and dW} are two correlated standard Brownian motions such that

Cov(dW,}', dW}?) = pdt.

The variance process is always positive and cannot reach zero if the Feller con-
dition holds, which is given by

2k0 > o

6 > 0 is the long term variance, of k as the rate of mean reversion. With the
constant volatility assumption in the Black Scholes model, one assumes that
the underlying stock price process follows a lognormal stochastic process. The
basic assumption in a stochastic volatility model is, that the volatility of the
underlying stock is itself a random variable. There are two Brownian motions:
one for the underlying stock and one for the volatility. The two processes of
the Heston model are correlated, whereas the correlation parameter p describes
the dependence of the two processes. In most cases the correlation parameter
is negative, which means that increases/decreases in the stock price leads to
decreases/increases in the variance process. Empirical studies have shown that
an assets log-return distribution is non Gaussian. It is characterized by heavy
tails and high peaks (leptokurtic). There is also empirical evidence that equity
returns and implied volatility are correlated (”leverage effect”). In contrast,
the Heston model can imply a number of different distributions, depending on
the values of its parameters: p, which can be interpreted as the correlation
between the log-returns and volatility of the asset, affects the heaviness of the
tails and therefore the skewness of the distribution. o, the volatility of volatility
parameter is responsible for the kurtosis (peak) of the distribution. On the
volatility surface sigma effects the intensity of the smile effect. x, the mean
reversion parameter represents the degree of volatility clustering, 6 is the long
term level of the variance process and vy is the initial variance of the underlying.

2.2 Heston model calibration

The Heston model has five independent parameters (k, 6, o, p, v9), which have to
be determined by calibrating the model to a market observed implied volatility



surface for european options with different strikes and maturities. The volatil-
ities are converted to a set of option prices {C.(K;,T;)} and the calibration
process solves a least squares minimization problem and determines the model
parameters which give the best fit to the given market data. Mathematically
the squared differences between vanilla option market prices and that of the
model are minimized over the parameter space, i.e.

Z(C* (Klv TJ) - OHeston(Kia T]))Q — min (10)
with the Feller condition as nonlinear constraint
2k6 > o2

The resulting problem of parameter identification is ill-posed, so regularization
techniques have to be used to obtain stable results.

Once a parameter set has been determined by the calibration routine, one can
price other options (european vanilla options with different strikes or more ex-
otic options like barriers).

The price to pay for more realistic models is the increased complexity of model
calibration. The minimization problem is complicated to solve, because in gen-
eral the the funcional to minimize is not convex, which poses some complications.
The objective function does not have to have any special structure to guarantee
that gradient-based methods lead to acceptable results.

Two groups of algorithms can be applied to solve these optimization problems.
The first group are the locally convergent algorithms which will find a min-
imum but not necessarily the global one (e.g. Levenberg-Marquardt). The
second group of algorithms are the globally convergent algorithms which should
theoretically (run time going to infinity) be able to find the global minimum
(Horst & Pardalos (1995)). The disadvantage of the second group is the enor-
mous amount of computation time in comparison to the algorithms of the first
group to obtain results. Once a risk neutral model is found, which reproduces
the prices of liquid traded options quite well, this model is used to price ex-
otic and illiquid options. The calibration function implemented in the UnRisk
PRICING ENGINE searches in the five-dimensional parameter range for a good
starting value for a gradient based optimization routine , and then solves the
minimization problem using the Levenberg Marquadt algorithm. The algorithm
determines the optimal direction moving downhill on the parameter manifold to
the minimum of the objective function. The advantage of this method is that
the calibration works reasonable fast, but one always has the risk to end up in
a local minimum. As a consequence a good initial guess is crucial.
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