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1 General Hull & White Model

1.1 Introduction

The General Hull & White model is a one factor interest rate model of the form

dr = (η(t)− γ(t)r)dt+ σ(t)dW (γ(t) > 0)

where η(t) is the deterministic drift, γ(t) is the reversion speed and σ(t) is the
Hull & White volatility. In the UnRisk PRICING ENGINE η(t), γ(t) and σ(t)
are assumed to be piecewise constant. Therefore the General Hull & White
model can be considered as a piecewise Vasicek model.

1.2 Theoretical Background

We consider a generalized one-factor Hull & White model, where the short rate
process is assumed to follow

dr = (η(t)− γ(t)r)dt+ σ(t)dW (γ(t) > 0)

with dW being the increment of a Wiener process, σ(t) being the volatility of the
short rate process at time t, γ(t) the mean reversion speed and η(t) a function
which allows the Hull & White model to fit the actual yield curve.

No-arbitrage arguments (cf., e.g. Wilmott (1998)) allow an equivalent for-
mulation by means of a parabolic partial differential equation (backwards in
time) for the value V of a bond or a derivative security
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Appropriate end conditions (payoff at maturity) and boundary conditions have
to be formulated to make the pricing problem uniquely solvable. In order to
be consistent with the market, one has to identify the Hull & White parameter
functions (η, γ, σ) from market prices of liquid instruments. Here, we deal with
the calibration of the one-factor Hull & White model, given the swap curve and
matrices of Black 76 cap volatilities and / or Black 76 swaption volatilities.

1.3 Inverse and Ill-Posed Problems

The parameters of the Hull & White model, which are required as input for
pricing purposes, cannot be observed directly because they refer to the future
development of interest rates. Hence, one has to identify implied volatilities
from market prices of liquid instruments. Mathematically speaking, this means
the identification of the unknown parameters (η(t), γ(t), σ(t)) from market
prices, and this means in particular the identification of diffusion coefficients in
parabolic equations. This is an ill-posed problem which needs proper treatment.
Examples of parameter identification problems in different contexts but with
mathematical similarities can be found in Binder et al. (1990), Burger et al.
(1999) and Engl & Kügler (2002).

A mathematical problem is said to be well-posed if

1. for all data, there exists a solution
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2. the solution is unique, and

3. the solution depends continuously on the data.

In our case, condition 3) is violated, i.e., small perturbations in the (market)
data may lead to arbitrarily large perturbations in the parameters of the interest
rate model. For the stable treatment of inverse and ill-posed problems, so-called
regularization techniques have to be applied. For an overview on these, see Engl
et al. (1996, 2nd edition 2000). The classical approach to stabilize ill-posed
problems is by Tikhonov regularization. Instead of solving F(x)=y, one solves
the optimization problem

min ||F (x)− y||2 + α||x− x?||2

where x? is an estimate for the solution x. In our case F would be the function,
which maps the parameters of the interest rate model to the prices of caps and
swaptions. The term α||x − x?||2 is a penalty term for the distance between x
and x?. Other penalty terms are possible, for example terms which penalize the
variation of the solution (bounded variation regularization, see Scherzer (2002)).
A different approach are iterative regularization schemes like Landweber itera-
tion (see Engl & Scherzer (2000)). In contrast to well-posed problems, it turns
out that for ill-posed problems steepest-descent-like schemes under certain con-
ditions converge faster than Newton-type schemes (Burger (2001)).

1.4 Identification of the Hull & White parameters by Reg-
ularization Techniques

We identify the parameter functions (η(t), γ(t), σ(t)) from an interest rate curve
(money market and swap rates) and from matrices of cap and swaption prices
for various strikes, expiries and maturities. We want to identify (η(t), γ(t), σ(t))
as piecewise constant functions with possible jumps of η(t) at the terms of the
interest rate curve and with possible jumps for γ(t) and σ(t) at the terms of the
caps / swaptions. If η(t), γ(t), σ(t) are known as piecewise constant functions,
analytic solutions for zero bond prices and for caps, floors and swaptions are
available and implemented in the UnRisk PRICING ENGINE. If γ(t) and σ(t)
are given as piecewise constant functions, then η(t) (as a piecewise constant
function) can be identified from zero bond prices by solving a triangular linear
system. Let η(γ, σ) denote this drift function being consistent with the yield
curve. The functions γ(t) and σ(t) to be identified should

1. lead to prices of caps / swaptions close to market prices, when applying
an (η(γ, σ), γ, σ) Hull & White model,

2. not show severe oscillatory behavior.

It turns out that a combination of Tikhonov regularization, bounded variation
regularization and of a steepest descent iterative scheme leads to very good
results. To be more specific: We minimize∑

(HullWhiteCapSwaptions(γ, σ)−MarketPrices)2+α1(γ−γ?)+α2(σi+1−σi)2

and use a steepest descent algorithm with appropriate line search for minimiza-
tion.
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2 Hull & White 2 Factor Model

2.1 Introduction

In this section we consider an interest rate model, which is a generalization of
the 2 factor model of Hull & White (see Hull & White (1994)). It incorporates
a stochastic reversion level for the spot rate. The two factors are assumed to
fulfill the following stochastic differential equations:

dr = (θ(t) + u− a(t)r)dt+ σ1(t)dW1

du = −b(t)udt+ σ2(t)dW2,

a is the mean reversion speed of the spot rate r, θ + u its reversion level. The
stochastic variable u itself reverts to a level of zero at rate b. dW1 and dW2 are
increments of Wiener processes with instantaneous correlation ρ(t), i.e.,

E[dW1dW2] = ρ(t)dt, −1 ≤ ρ(t) ≤ 1

σ1 and σ2 are the volatilities. All model parameters are assumed to be time
dependent and piecewise constant.

This model provides a richer pattern of term structure movements and of
volatility structures than the corresponding 1 factor models.

2.2 Theoretical Background

Starting from the above stochastic differential equations, no arbitrage arguments
lead to an equivalent two-dimensional partial differential equation for the value
V (r, u, t) of a bond or a derivative security:
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Appropriate boundary and end conditions (payoff at maturity) have to be formu-
lated to make the pricing problem uniquely solvable. The aim of the calibration
is to identify the parameter functions (a, b, σ1, σ2, ρ, θ) from market prices of
liquid instruments. The given partial differential equation let us conclude that
identification of these parameters means to determine diffusion coefficients in
parabolic equations. This is an ill-conditioned problem and requires sophisti-
cated numerical methods, so-called regularization methods. Two popular classes
of regularization methods are Tikhonov regularization and iterative techniques
(see Engl et al. (1996, 2nd edition 2000)). In the two-factor case we use a combi-
nation of bounded variation regularization and regularization by iteration with
”early stopping”.
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2.3 Identification of the Hull & White parameters by Reg-
ularization Techniques

We identify the parameter functions (a, b, σ1, σ2, ρ, θ) from an interest rate
curve (money market and swap rates) and from matrices of cap and swaption
prices for various strikes, expiries and maturities. The functions σ1, σ2, and θ
are assumed to be piecewise constant with possible jumps of θ(t) at the terms
of the interest rate curve and at the swaption expiries and with possible jumps
of σ1 and σ2 at the swaption expiries. The parameters a, b and ρ are identified
as constants. In the case that the parameter functions are given in this form
we could derive analytic solutions for zero bond prices, for caps and floors, and
for forward start swaptions, which are implemented in the UnRisk PRICING
ENGINE. Knowing all parameters except the deterministic drift θ, θ can be
determined by the use of zero bond prices. Let θ(a, b, σ1, σ2, ρ) denote this
drift function being consistent with the yield curve. The functions a(t), b(t),
σ1(t), σ2(t) and ρ(t) should be determined such that they lead to prices of caps
and swaptions close to market prices, when applying the corresponding Hull &
White two-factor model and the functions are stable. So, we have to solve the
following problem:∑

(HullWhiteCapSwaptions[a, b, σ1, σ2, ρ]−MarketPrices)2 → min!

We solve this problem in two steps: In the first step we identify approximations
for the reversion speed a and the correlation ρ by minimizing the error in the
cap prices only. In the second step we minimize a combination of the error in the
cap prices and the error in the swaption prices and identify the whole number
of parameter functions, (a, b, σ1, σ2, ρ, θ) using the approximations of step
one as starting values. The regularization is done by an iterative technique,
a truncated Newton algorithm with the conjugate gradient method as inner
iteration (see Hanke (1997)). In contrast to the calibration of the one-factor
models the calibration of a Hull & White 2 factor model is only possible using
both, cap and swaption data.

3 Black Karasinski Model

3.1 Introduction

The Black Karasinski model is a one factor interest rate model of the form

d ln r = (η(t)− γ ln r)dt+ σdW (γ > 0)

where η(t), γ and σ are defined as deterministic drift, reversion speed and volatil-
ity of lognormal interest rates. In the UnRisk PRICING ENGINE η(t) is as-
sumed to be piecewise constant ,γ and σ are assumed to be positive constants.

3.2 Theoretical Background

We consider a one-factor Black Karasinski model, where the short rate process
is assumed to follow

dlnr = (η(t)− γlnr)dt+ σdW (γ > 0)
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with dW being the increment of a Wiener process, σ being the volatility of the
lognormal short rate process, γ the mean reversion speed and η(t) a piecewise
constant function which allows the Black Karasinski model to fit the actual yield
curve.
No-arbitrage arguments (cf.,e.g. Wilmott (1998)) allow an equivalent formula-
tion by means of a parabolic partial differential equation (backwards in time)
for the value V of a bond or a derivative security
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Appropriate end conditions (payoff at maturity) and boundary conditions have
to be formulated to make the pricing problem uniquely solvable. The equivalent
formulation of the partial differential equation in logarithmic variables (R=ln(r))
is

∂V

∂t
+
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2
σ2 ∂
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∂R2
+ (η(t)− γR)

∂V

∂R
− eRV = 0

In order to be consistent with the market, one has to identify the Black Karasin-
ski parameter functions η(t), γ and σ from market prices of liquid instruments.
By letting η be the only time dependent function, we decide to exactly fit the
current term structure of interest rates and to keep the other two parameters
at our disposal for the calibration to cap and swaption data.

3.3 Inverse and Ill-Posed Problems

The parameters of the Black Karasinski model, which are required as input
for pricing purposes, cannot be observed directly, because they refer to the
future development of interest rates. Mathematically speaking, this means the
identification of the unknown parameters η(t), γ and σ from market prices, and
this means in particular the identification of diffusion coefficients in parabolic
equations. This is an inverse problem which is usually ill-posed and needs to be
treated with sophisticated numerical methods, so called regularisation methods
to get a stable solution of the problem. A mathematical problem is said to be
well-posed if

• for all data, there exists a solution

• the solution is unique, and

• the solution depends continuously on the data.

In our case, the third condition is violated, i.e., small perturbations in the (mar-
ket) data may lead to arbitrarily large perturbations in the parameters of the
interest rate model. For the stable treatment of inverse and ill-posed problems,
so-called regularization techniques have to be applied. For an overview on these,
see Engl et al. (1996, 2nd edition 2000).
The classical approach to stabilize ill-posed problems is by Tikhonov regular-
ization. Instead of solving F(x)=y, one solves the optimization problem

minimize||F (x)− y||2 + α||x− x∗||2
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where x∗ is an estimate for the solution x.
In our case F would be the function, which maps the parameters of the interest
rate model to the prices of zero coupon bonds, caps and swaptions. The term
α||x− x∗||2 is a penalty term for the distance between x and x∗. Other penalty
terms are possible, for example terms which penalize the variation of the solu-
tion (bounded variation regularization, see Scherzer (2002)).

3.4 Identification of the Black Karasinski parameters by
Regularization Techniques

We identify the parameter functions η(t), γ and σ from the maket prices of zero
coupon bonds and form matrices of cap and swaption prices for various strikes,
expiries and maturities. In a first step for given speed γ and volatility σ as con-
stant functions of time, the piecewise constant drift η(t) is determined to fit a
given yield curve. The jumps of the piecewise constant function for the drift oc-
cur at the terms of the interest rate curve. This problem is called ”curve fitting”.

If η(t), γ and σ are known, solutions for zero bond prices, caps and swap-
tions are available and implemented by the use of a finite difference method in
the UnRisk PRICING ENGINE. Therefore we introduce a two dimensional grid
for the parameter domain [0, T ]x[rmin, rmax], which spans from the valuation
date to the maturity date in time direction and has the property, that all key
dates (coupon dates, expiry date, ...) of the financial instrument to be valuated
are hit exactly to guarantee accurate results. The time grid between these key
dates is chosen to be equidistant. In direction of the underlying, the compu-
tational domain in our discrete implementation is chosen to be equidistant in
the logarithm of r between a lower and an upper bound. Since the logarithm
of zero is undefined, we use the lower bound rmin = 1e-5%. The upper bound
rmax is chosen to be 100% because the sign of ln(r) does not change in this
domain. For r > 100% the convection term is the partial differential equation
would demand a different numerical treatment, For the most actively traded
currencies, this limit is not really a restriction, because interest rates have been
far away from 100% a long time. On this two-dimensional grid, the numerical
solution of the Black Karasinski PDE for given parameter functions (η(t), γ, σ)
is calculated by the method of Crank-Nicolson. To guarantee stability in the so-
lution and to avoid unrealistic oscillations, so called upwind techniques are used.

If γand σ are given as constant functions, then η(t) (as a piecewise constant
function) can be identified from zero bond prices by solving the curve fitting
problem. Therefore we define a nonlinear operator F which maps the drift
function η(t) to the corresponding prices of zero coupon bonds. Our aim is to
solve the nonlinear equation F (η(t)) = B∗ , where B∗ is the vector of given
zero coupon bond market data. This problem is equivalent to the minimization
of the functional ||F (η(t)) − B∗||2. To obtain a stable solution of the inverse
problem, we start with an initial guess x0 of the solution and solve in every
iteration step the linearized nonlinear equation F ′(xk)(x−xk) = −(F (x)−B∗)
by using a truncated Tikhonov-CG algorithm. The solution of this equation
is a good next approximation xk+1 to a solution. The iteration is stopped if
the residual of the nonlinear equation is smaller than a given tolerance ε. Let
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(η(t), γ, σ) denote this drift function being consistent with the yield curve. The
remaining constant parameters γ and σ to be identified should lead to prices of
caps / swaptions close to market prices, when applying an (η(γ, σ), γ, σ) Black
Karasinski model. So we solve the following least squares problem:∑

(ModelPricesCapSwaptions(γ, σ)−MarketPricesCapSwaptions)2 → min!

4 LIBOR Market Model

4.1 Introduction

The LIBOR Market Model (LMM) is an n-dimensional (n factor) interest rate
model in which the stochastic process for the forward interest rates Fk(t) has
the form (see Brigo & Mercurio 2006)

dFk(t) = σk(t)Fk(t)
k∑

j=β(t)

τjρj,kσj(t)Fj(t)
1 + τjFj(t)

dt+ σk(t)Fk(t)dWk(t) (1)

where σ(t) and ρ are volatility and correlation of interest rates. In the UnRisk
PRICING ENGINE σk(t) follows the ansatz (e.g. Brigo & Mercurio 2006)

σk(t) = ψk((a(Tk−1 − t) + b) exp−c(Tk−1−t) +d)

and ρ follows the ansatz (e.g. Rebonato 2006)

ρi,j = exp−p1(exp−p2 min(i,j))|i−j|

whereas ψk, a, b, c, d and p1, p2 are constants with p2 strictly positive. dWi(t)
and dWj(t) are increments of Wiener processes with instantaneous correlation
ρi,j , i.e.

dW (t)dW (t) = ρdt

In the UnRisk PRICING ENGINE we are using the so called spot-measure
dynamics representation (1) of the LMM. This representation has no known
transition density, so that the equation from above needs to be discretised in
order to perform simulations.

Applying Ito’s Lemma, the equivalent log process for the interest rates is
given by

dlnFk(t) = σk(t)
k∑

j=β(t)

τjρj,kσj(t)Fj(t)
1 + τjFj(t)

dt− σ2
k(t)
2

dt+ σk(t)dWk(t) (2)

4.2 Theoretical Background

We consider the n factor LIBOR Market model, where the forward rate process
is assumed to follow

dFk(t) = σk(t)Fk(t)
k∑

j=β(t)

τjρj,kσj(t)Fj(t)
1 + τjFj(t)

dt+ σk(t)Fk(t)dWk(t)
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with σ being the volatility of the forward rate processes, τ the time difference,
ρ the correlation matrix and dW the increment of an n-dimensional Wiener
process with property

dW (t)dW (t) = ρdt

The usual way to price bonds and other derivatives is done by Monte Carlo
Simulation. For calibration a faster method is required. The quantity

νLMM
α,β =

1
Tα

β∑
i,j=α+1

ωi(0)ωj(0)Fi(0)Fj(0)ρi, j
S2
α,β(0)

∫ Tα

0

σi(t)σj(t)dt

is a good, fast and well tested approximation for Black76 swaption volatility
(see Brigo & Mercurio 2006). If you put this quantity in Black’s formula for
swaptions, you can compute approximated swaption prices with the LMM. In
order to be consistent with the market, one has to identify the LIBOR market
model parameters (ψ, a, b, c, d and p1, p2 (see 2 and 3)) from market prices of
liquid instruments. Due to the fact that the parameters cannot be observed in
a direct way because they refer to the future development of interest rates, one
has to use minimization methods to fit the unknown parameters to the given
market data. In the UnRisk PRICING ENGINE we minimize the sum of the
squares of the difference of approximated swaption volatilities (6) and given
market swaption volatilities

min
∑

Swaptions

(σMkt
α,β − νLMM

α,β )2

by the use of a local minimization method (Levenberg-Marquardt) in connection
with global optimization techniques to find acceptable starting points.
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