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equations may lead to a discretized system of several million spatial
unknowns acting on different time scales.

At MathConsult, we have been working on mathematical modeling and
numerical simulation of blast furnaces in several research projects.

Figure 1 shows the reduction degree (of iron ore) in a blast furnace. The
blue stripes are the coke layers, where no reduction takes place. Red means
metallic iron.

Would you like to rely on tree methods for simulating a chemical 
reactor? 

Reaction – convection – diffusion
When pricing structured instruments in quantitative finance under the
assumption of mean-reverting models, you quite frequently obtain partial
differential equations of reaction-convection-diffusion type. For example,
this is the case for Hull-White, Black-Karasinski or certain types of electricity
pricing models.

In Binder & Schatz (2004), we presented finite-elements and streamline
diffusion as an advanced technique for solving reaction-convection-diffu-
sion equations.  

For example, let us start with a two-factor Hull-White interest rate model
(see Hull & White, 1994)

dr = [θ(t) + u(t) − a(t)r(t)]dt + σ1(t)dX1

du = −b(t)u(t)dt + σ2(t)dX2

The first factor r denotes the spot rate, the second factor u some kind of
long-term development of the interest rates. a is the mean reversion speed of
the spot rate r, (θ + u)/a its reversion level. The stochastic variable u itself
reverts to a level of zero at rate b. dX1 and dX2 are increments of Wiener
processes with instantaneous correlation ρ(t) · σ1 and σ2 are the volatilities. 

No-arbitrage-arguments then lead to the Hull-White equation
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which needs additional end and transition conditions. We will discuss the
problem of boundary conditions, when restricting ourselves to a bounded
calculation domain, below.
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I
don’t like trees. At least I don’t like them when used for the numerical
solution of partial differential equations. From the theoretical point of
view, binomial trees are quite appealing in teaching the concept of no-
arbitrage. Nevertheless, from the numerical point of view, there are
major drawbacks: You typically need a huge number of time steps to
obtain a reasonable accuracy by binomial trees. This could be improved

by trinomial trees, but the problem of instability remains. 
To be more specific: Trinomial trees are explicit numerical schemes for

typically parabolic differential equations, which may lead to severe stability
problems. In the case of mean-reverting models, this is well known. Fiddling
around with the branching of the tree makes the method stable again, but
changes the domain of the partial differential equation and therefore its
solution.

This article should give an overview how we at MathConsult work on tak-
ing the tree risk out of computational finance.

Linz is the industrial center of Austria and also one of the largest centers
for industrial and applied mathematics on the worldwide scale.       

Ironmaking in blast furnaces
Iron is produced from iron ore, typically in blast furnaces with a typical fur-
nace producing 2 or 3 million metric tons of metallic iron per year (and obvi-
ously also some industrial amount of carbon dioxide). Although iron has
been smelted for at least 2500 years, little is known about what happens in
the interior of a furnace and where it happens. 

Modeling a blast furnace leads to systems of dozens of nonlinear tran-
sient partial differential equations, covering the flows of materials (iron and
coke layers, reduction gas, additives controlling the basicity and viscosity of
the slag), phase transitions, energy consumption and energy transport,
chemical reactions and several more. A complete system of modeling 

Binomial trees might be great in the 
classroom, but in the real world they’re so
much firewood writes Andreas Binder of
MathConsult

How to kill your trees properly
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The end and transition conditions describe the special shape of a finan-
cial contract, like coupons, callabilities and so on.  

If we discretize time (for the ease of readability, I write down the fully
implicit scheme) and multiply this equation by a test function w living in a
proper function space, we obtain after integration

Find Vn+1 ∈ U such that, for all w ∈ U,
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To obtain a finite-dimensional version, space discretization is necessary,
for example by restricting the ansatz functions and the test functions to
piecewise linear functions.

The test bond and the model
We consider a 30 year coupon-bearing bond paying a fixed coupon of 5% per
year. No credit risk as considered here. Under the swap curve of March 15,
2005, this bond has a fair value of 1.1086 on its start date.

A two factor Hull-White (Hull & White, 1994) with a = 1.2, b = 0.03, σ1 =
0.015, σ2 = 0.01, ρ = 0.5 is fitted to  the swap curve by a piecewise constant θ(t).

Calculation domain and discretisation
The domain of the Hull-White differential equation is – in principle –
unbounded. For the numerical calculation, we restrict ourselves to a
domain where influences from outside the domain should not play a role.
We use a regular grid of 30 × 30 points, a time step of 0.05 years and Crank-

Figure 1: Reduction degree in a blast furnace.

Figure 2: Dirichlet boundary conditions, no streamline diffusion, shows severe
oscillations.
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Nicolson time discretization. For Dirichlet boundary conditions V = 1 at the
boundary, we obtain for different values of (r, u) at the start date of the bond:

The numerical value for our example bond is 1.1179, meaning an error of
93 basis points. 

The heavy oscillations near the boundaries are not really a good argu-
ment in favor of finite elements. A slightly more careful investigation of the
results shows that these oscillations arise in regions where convection plays
an important role.

Streamline diffusion (as proposed in Binder & Schatz (2004) is equivalent
to adding artificial diffusion along the streamlines of the flow. The choice of

the smoothing parameter depends on the element size and on the 
convection /diffusion ratio. The advantage of this approach is that artificial
diffusion is added only if and where necessary.  If we again use Dirichlet con-
ditions but now with the streamline diffusion added, we obtain

This result is already a very good one with an error of 1bp. Nevertheless,
there are (due to the Dirichlet conditions) boundary layers which we would
like to get rid of.

ANDREAS BINDER

Figure 3: Velocity field of the convective part.

Figure 4: Dirichlet boundary conditions, finite elements with streamline diffusion,
value of the example bond: 1.1085.
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Figure 5: Neumann boundary conditions, finite elements without streamline 
diffusion, value of the example bond: 1.1072.
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Figure 6: Plot of first derivative with respect to r. Neumann conditions, no
streamline diffusion.
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With homogeneous Neumann boundary conditions, the boundary lay-
ers disappear:

For the results in Figure 5, we switched off the streamline diffusion
again. The solution looks quite smooth, but the numerical error of 14 basis
points might be improved. Using Neumann conditions removed the oscilla-
tions in the value, but they are still present in the first derivative with
respect to the short rate.

The final two plots in Figures 7 and 8 are then the results for the value
and the short rate delta when we apply Neumann conditions and streamline
diffusion.

Conclusion
With proper application of finite elements and streamline diffusion tech-
niques, you have got the proper numerical techniques proven in industrial
processes. 

Trees are bad. Let’s start the chain-saw!

Links
If you are interested in more industrial mathematics at its best, visit
http://www.ricam.oeaw.ac.at/media
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MathConsult has been developing advanced numerical methods for quantitative
finance since 1997. The UnRisk PRICING ENGINE (current version is 2.5, the 12th release)
came to the market in 2001 and serves customers in more than 20 countries.
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FORTHCOMING

The next letter from Steel Town will be written by Heinz Engl. He is director of the
Radon Institute for Compuatational and Applied Mathematics (RICAM). At the ICIAM
(Zurich, July 2007) he will receive the ICIAM Pioneer Prize 2007, established for 
pioneering work introducing applied mathematical methods and scientific computing
techniques to an industrial problem area or a new scientific field of applications.

Figure 7: Neumann boundary conditions with streamline diffusion. Value of the
example bond: 1.1085. Error = 1bp.
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Figure 8: Neumann boundary conditions with streamline diffusion. Smooth
interest rate delta. 

r

–8

–6

–4

–2

0

u

REFERENCES
Binder, A. and Schatz, A. (2004). Finite elements and streamline diffusion for the pricing of
structured financial instruments,  Wilmott magazine, November 2004, 97–103.
Duffy, D. (2004). A critique of the Crank Nicolson scheme strengths and weaknesses for finan-
cial instrument pricing, Wilmott magazine, July 2004, 68–76.
Engl, H.W., Gökler, G., Schatz, A., and Zeisel, H. (submitted). Modelling and numerics for the
transient simulation of the blast furnace process.
Hull, J. and White, A. (1994). Numerical procedures for implementing term structure models II:
two-factor models. Journal of Derivatives, 37–48.
Morton, K. W. (1996). Numerical Solution of Convection-Diffusion Problems. Chapman & Hall:
London. 
Stroustrup, B. (2000). The C++ Programming Language. Addison-Wesley: Reading, MA, USA.
Roos, H.-G., Stynes, M., and Tobiska, L. (1996). Numerical Methods for Singularly Perturbed
Differential Equations - Convection-Diffusion and Flow Problems. Springer: Berlin.
UnRisk Manual: Available from www.unriskderivatives.com W

ANDREAS BINDER


