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1 Adaptive Integration

This section is devoted to the presentation of the basic ideas of Adaptive In-
tegration. The reader is assumed to be familiar with the very basic theory of
option pricing (for example: as presented in [ Hull (1993)]). We want, at time
t0, to price a European option on an underlying equity MyEquity, which expires
at time T. In the classical Black-Scholes theory, the price of MyEquity at time
t, S(t) is assumed to follow a geometric Brownian motion

dSt = µStdt+ σStdWt (1)

where dWt is the increment of a Wiener process W. These increments dW can be
interpreted as realizations of a random variable which is normally distributed
with mean 0 and variance dt. Arbitrage arguments then lead to the Black-
Scholes partial differential equation for the fair value V of the option,
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valid in the domain [0,∞) x [t0, T ]. Note that, by applying these arbitrage argu-
ments, the growth speed µ disappeared and was replaced by the risk-free rate r.
We will return to this point later. The Black-Scholes equation is a parabolic dif-
ferential equation backwards in time, which requires a final condition at expiry
T to be well-posed. This final condition is

V (S, T ) = payoff(S)

where, in the case of a call payoff(S) = max(S − K, 0), in the case of a put
payoff(S) = max(K − S, 0). A Green´s function for the Black-Scholes equation
is available (see, e.g., [ Wilmott (1998)])
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and therefore the solution of the Black-Scholes differential equation satisfying
the final condition is given by

V (S, t) =
∫ ∞

0

G(S, S1, t, T )Payoff(S1) dS1

Hence, if we know the payoff function, and if we can calculate this integral, we
can calculate the value of the European option. If we have a vanilla call or put
option, then this integral can be calculated by substitution and integration by
parts, and one obtains the well-known Black-Scholes formulae.

More than one time step-the semigroup property
We can write the last formula also as

V (S, t) =
∫ ∞

0

G(S, S1, t, T )Payoff(S1, T ) dS1

This can be shown to remain true, when we introduce a sequence of points tk
with t0 < t1 < .... < tn−1 < tn = T and write the recursion

V (S, tj) =
∫ ∞

0

G(S, S1, tj , tj+1)Payoff(S1, tj+1) dS1 (2)
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Numerical Integration and Interpolation
Let us assume that we know V (S1, tj+1) for all S1 and we want to calculate
V (S, tj). In general, the integral cannot be calculated analytically but needs
the application of some integration scheme. Hence we write

V (S, tj) ≈
K∑

k=1

ωkG (S, Sk, tj , tj+1)V (Sk, tj+1)

with ωk being the weights and Sk the nodes of the integration rule. In our
implementation, Sk depend on S, tj and tj+1.
Typically, the solutions of the Black-Scholes equation are quite smooth and
therefore the application of a high-order scheme for the numerical integration
makes sense. In the UnRisk PRICING ENGINE realization, a sum of four 6-
point Gauss integration rules is applied.
Now assume that we know V (S, tj+1) not for all S, but only for certain nodes
Sk(k = 0, .., kmax). Then, in general, the Gauss integration points will be dif-
ferent from the nodes. We approximate the value of the option at these Gauss
points by interpolation. Typically, cubic interpolation is used in the UnRisk
PRICING ENGINE. There are some special cases (for example around the bar-
rier in the case of a barrier option), in which cubic interpolation tends to lead
to oscillating solutions. In these case, linear interpolation is used in order to
obtain even more stable results.

Gridding
If not overruled by the user (by the function call option NumericalParameters),
the number of intervals in direction of the underlying is 200, and the maximal
time step is 30 days, but an actual time step may be shorter to guarantee that
all key dates (like the ex-dividend day and the day before) are hit. The gridding
in the direction of the underlying depends on the instrument to be valuated and
is essentially equidistant (for interest rate derivatives) or equidistant in loga-
rithm (equity derivatives). To obtain good accuracy and stability, the gridding
is further adapted for some instruments: Thus, e.g., for barrier options the grid
is refined near the barrier.

Adaptive Integration
Thus, Adaptive Integration has two main ingredients:
a) Use high-order integration schemes for the calculation of the integrals arising
from the application of Green´s functions to the partial differential equations
of mathematical finance.
b) Use adaptive gridding schemes for the underlying as well as for time to make
sure that fine grids are introduced only where necessary.

Accuracy and Stability
We consider a plain vanilla European put option and valuate it using binomial
trees and using the UnRisk PRICING ENGINE. The put option has a life time
of one year, the spot price and the exercise price are 100, the interest rate is
assumed to be flat 5% per year (continuous compounding) and the volatility is
35% per year. The analytic value for this option is 11.25137, obtained by the
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Black-Scholes formula.
Adaptive Integration using 500 points in the direction of the underlying delivers

max. Timestep Value
500 11.2432
200 11.2367
100 11.2522
50 11.2513
30 11.2513
10 11.2513
5 11.2513
2 11.2513
1 11.2513

If one uses binomial trees for numerically valuating options, it is well known
that there is some oscillatory behavior of the obtained numerical values between
even and odd numbers of discretization levels. For the European put option from
above, the values obtained by binomial trees with various steps are as follows

Number of levels Value Number of levels Value
2 10.0528 3 12.6379
4 10.6199 5 12.075
8 10.9292 9 11.7048
16 11.089 17 11.4899
32 11.1699 33 11.3738
64 11.2106 65 11.3134
128 11.231 129 11.2826
256 11.2412 257 11.267
512 11.2463 513 11.2592
1024 11.2488 1025 11.2553
2048 11.2501 2049 11.2533
4096 11.2507 4097 11.2524

The numerical schemes implemented in the UnRisk PRICING ENGINE have
directed special attention also to a stable valuation of the Greeks. Let us con-
sider a European up-and-out call option. Let the option expire in 2 days, let
the interest rate be 5% per year, the volatility 25% per year and let the barrier
be 120. It is well known that binomial trees do not deliver robust Greeks near
the barrier. With Adaptive Integration the plots of Delta and Gamma (the
first and second derivatives of the option value with respect to the spot price of
the underlying) obtained by Adaptive Integration and obtained by the analytic
solution, which is available for a flat interest rate and a flat volatility look ab-
solutely identical.

The transition formula (2) can be interpreted (see, e.g.,Wilmott (1998)) not
only as the application of a Green function for the Black-Scholes partial differ-
ential equation to the end condition but also as follows:
The fair value of an option is the present value of the expected payoff at expiry
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under a risk-neutral random walk for the underlying. This risk-neutral random
walk is the same as in (1) but with µ replaced by the risk-free rate r.
Under the last point of view, Adaptive Integration is easily transferred to the
pricing of interest rate derivatives. According to the interest rate model under
consideration, one has to take into account different risk-free random walks.
However, there is one big difference. The rate used for discounting must reflect
that it is itself the underlying (or corresponds to the underlying in some way)
and therefore, in order to obtain good convergence rates in terms of the time
step, for discounting not only the interest rate at time tj but also the different
interest rates in the Gauss points at time tj+1 should be taken into account.
For discounting the contribution of the value of the derivative instrument at any
Gauss point (at time level tj+1), the average of the rate at tj and of the rate in
the Gauss point is used.

2 Streamline Diffusion

In this chapter the basic ideas for the numerical solution under two factor models
are presented. Considering as example a generalized Hull & White two-factor in-
terest rate model (see Hull & White (1994)) and the underlying two-dimensional
partial differential equation we will explain briefly the method of finite elements,
which forms the basis of our algorithm, and the idea of streamline diffusion.

Example: General Hull & White two factor short rate model

In this model the first factor, the spot rate, rt and the second factor, some
kind of long-term interest rate, ut are assumed to fulfill the following stochastic
differential equations:

dr(t) = (θ(t) + u− a(t)r(t))dt+ σ1(t)dW1(t)

du(t) = −b(t)u(t)dt+ σ2(t)dW2(t)

where a is the mean reversion speed, θ+u is the reversion level of r, and u itself
reverts to a level of zero at rate b. dW1 and dW2 are increments of Wiener
processes with instantaneous correlation ρ(t), i.e.,

E[dW1, dW2] = ρ(t)dt, −1 <= ρ(t) <= 1.

σ1 and σ2 are the volatilities.
No arbitrage arguments lead to the following two-dimensional partial differential
equation for the price V[r,u,t] of a zero-coupon bond with maturity T:

0 =
∂V

∂t
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1
2
σ2

1(t)
∂2V
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∂r∂u
(r, u, t) + (θ(t) + u− a(t)r)

∂V

∂r
(r, u, t)− rV (r, u, t)

The appropriate final condition is V[r,u,T]=1. We want to price the zero-coupon
bond at time t0 numerically in order to explain the used discretizations and
methods.
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General Formulation of the Partial Differential Equation

A general formulation of the partial differential equations above in conserva-
tive form is:

∂V

∂t
+ div(

(
arr aru

aur auu

)
gradV ) + (ar, au)gradV + aV = f

(omitting the notation for dependency on r,u, and t furthermore, in order to
keep the formulas short).
In continuum mechanics equations of this type occur quite frequently. They are
called diffusion-convection-reaction equations. It is well known that standard
discretization methods often fail to give stable solutions (see Morton (1996)).
Especially the convective term, which is (ar ,au) grad V can cause severe prob-
lems in the solution. If it is treated using standard discretization methods, high
oscillations in the computed solution depending on r and u are the consequences.
So-called upwind techniques have to be used in order to gain stability.

Time Discretization - Crank Nicolson

It was already stressed in the section about Adaptive Integration that the so-
lution process is of course backwards in time. Under the assumption that we
know the value of the bond V j+1 at time t(j+1) for each r and u we want to
calculate the value V j at time t(j). Doing the time discretization in a rather
general way, we obtain (with ∆tj := t(j + 1)− t(j))

V j+1 − V j

∆tj
+ α(div(

(
aj+1

rr aj+1
ru

aj+1
ur aj+1

uu

)
gradV j+1)

+(aj+1
r , aj+1

u )gradV j+1 + aj+1V j+1)

+(1− α)(div(
(
aj

rr aj
ru

aj
ur aj

uu

)
gradV j)

+(aj
r, a

j
u)gradV j + ajV j)

= αf j+1 + (1− α)f j

(3)

If we choose the parameter α equal to 0.5, we obtain a scheme of Crank-Nicolson
type, which leads to quadratic convergence rates for the time discretization.
In order to get a finite dimensional form of our problem which can be solved
numerically, we have to further discretize the equation and the computational
domain, which is spanned by the state variables r and u. The choice of the size
of this domain we will discuss in one of the following sections.

Space Discretization - Finite Elements

The basic idea of the Finite Element method is to divide the domain into a
large number of, example given, rectangles or triangles and to define on the
resulting grid locally Ansatz- and Testfunctions. The numerical solution of the
problem is then represented by a linear combination of these Ansatzfunctions.
The coefficients of the linear combination are the unknowns of the discretized
equation system, which has to be determined.
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Multiplying (3) formally by a function U, integrating over the domain and then
doing integration by parts in the second order terms leads to

α(−(
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uu

)
gradV j+1, gradU) + ((aj+1

r , aj+1
u )gradV j+1, U)

+((aj+1 +
1
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)V j+1, U)) + (1− α)(−(
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)
gradV j , gradU)
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r, a
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u)gradV j , U) + ((aj +

1
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)V j , U))

= α(f j+1, U) + (1− α)(f j , U)

which is the so-call weak variational formulation of the problem (where (.,.)
denotes the inner product on the 2-dimensional infinite domain. More details
concerning this and the theory of finite elements including Sobolev spaces can
be found in Ciarlet (1978).

Streamline Diffusion - Going with the flow!

Up to now the special type of the equation, including convection, was not taken
into account in the numerical method. In order to obtain stability in the solu-
tion and to avoid unrealistic oscillations, we use so-called streamline diffusion,
which is a special upwind technique. Its name is originated in computational
fluid dynamics, where, very roughly speaking, streamline diffusion means adding
artificial diffusion in the direction of the flow. So, each point in the computa-
tional domain gains information from where the information really comes from,
from opposite streamline direction. A detailed mathematical description of the
streamline diffusion method can be found in Roos et al. (1996). Since in our
case the convection is mainly determined by the drift and by the mean rever-
sion, the direction and the magnitude of the flow varies in the computational
domain. The higher the magnitude of the flow, the more artificial streamline
diffusion is necessary.

Gridding - Time and Space

The relevant time interval for the pricing process spans from the maturity date
to the valuation date. It is clear that there exist several key dates which have
to be met exactly by the time discretization in order to obtain accurate results,
e.g. settlement date, coupon dates, dividend dates, call dates and so on. In our
algorithm for two factor models these key dates are set at the beginning to do
the time discretization between these dates in an equidistant way. The size of
the computational domain, spanned by r und u, is set in a way that the infor-
mation of the prescribed boundary condition does not penetrate to the center,
during the considered time interval. The center of the domain is determined by
the current short rates. So the choice of the boundary conditions, which have
to be set for solving the partial differential equation, has no influence on the
computed result. From the practical point of view this is reflected in the fact
that the propability of very high or low, maybe even negative, interest rates is
very small.
Therefore it is clear that the size of the computational domain depends on the
lifetime of the considered instrument and on the parameters which form the co-
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efficient functions of the partial differential equation: volatility, drift and mean
reversion. The computational time to price an instrument therefore does not
depend linearly on its lifetime. The longer the lifetime, the higher the distance
of information transport and the bigger the computational domain. To hold
the accuracy constant the refinement of the discretization at least has to be
constant. As a consequence the number of unknowns has to be increased.
If not overruled by the user (by the function call option NumericalParame-
ters2D), the maximal number of intervals in both directions of the factors is set
to 50, and the maximal time step is 20 days. An actual time step may be shorter
to guarantee that all key dates are hit in the way that we have already explained
in the beginning of this section. The gridding in factor directions is done in a
way so that the discretization is finer near the current factor settings, which
determine the center of the grid and become coarser towards the boundaries.

Comparison Trinomial Trees - Streamline Diffusion

To price instruments by the use of trinomial trees accurately a reasonable depth
of the tree is required. In order to guarantee that the weights in the trinomial
tree can be interpreted as probability measures, they have to be ≥ 0. This can
be done by allowing the branching to be non-standard at the edge of the tree
(see Hull & White (1996)). Applying this special branching technique means to
change the underlying model, which is commented in Leippold & Wiener (n.d.)
with the statement: ”Of course altering the geometry of the tree is an arbitrary
manipulation of the pricing problem and thus subject to some criticism.”.
In the following table you can find a comparison of the numerical results using
trinomial trees and the method of streamline diffusion for zero coupon bonds.
The underlying two-factor model is of type General Hull & White with constant
parameters:

θ = 0.012, a = 0.2, b = 0.1, σ1 = 0.01, σ2 = 0.001, ρ = 0.3

The special branching starts in level 10. The timestep is 1/10 years.

Life Time Trinomial Trees Streamline Diffusion Analytic Solution
1 years 0.950341 0.950353 0.950353
2 years 0.901665 0.901756 0.901756
4 years 0.808564 0.809131 0.809135
10 years 0.572741 0.57662 0.576645
20 years 0.315969 0.324654 0.324704
30 years 0.17375 0.183224 0.18328

As expected, the trinomial tree approach works quite well for short life times
of the bond, when up- and down-branching does not play a too important role.
However, when we consider the 30 years zero coupon bond, the mispricing of
the trinomial tree delivers a price which differs from the analytical value by
6%, which is not acceptable. This mispricing does not result from a too large
time step, but from a change of the model by up- and down-branching. On the
other hand, streamline diffusion delivers prices within the range of a basis point.
Since the numerical implementation of the method of trinomial trees was done

7



in Mathematica, whereas Finite Elements with Streamline Diffusion has been
implemented in C++ a comparison of the computation times of these examples
would not be fair to the trinomial tree approach.

3 Monte Carlo Methods

In this chapter we give a short summary about Monte Carlo methods in financial
engineering as described in Glasserman (2003).

Monte Carlo methods are based on the analogy between probability and
volume. Consider, for example, the problem of estimating the integral of a
function f over the unit interval. We may represent the integral

α =
∫ 1

0

f(x)dx

as an expectation E [f(U)], with U uniformly distributed between 0 and 1. Eval-
uating the function f at n random points and averaging the results produces
the Monte Carlo estimate

α̂n =
1
n

n∑
i=1

f(ui)

The law of large numbers ensures that this estimate converges to the correct
value as the number of draws increases.

What does this have to do with financial engineering? A fundamental impli-
cation of asset pricing theory is that under certain circumstances, the price of
a derivative security can be usefully represented as an expected value. Valuing
derivatives thus reduces to computing expectations. In many cases, if we were
to write the relevant expectation as an integral, we would find that its dimen-
sion is large or even infinite. This is precisely the sort of setting in which Monte
Carlo methods become attractive.

Konvergenzgeschwindigkeit

References

Ciarlet, P. G. (1978), The Finite Element Method for Elliptic Problems, Series
”Studies in Mathematics and its Applications”, North-Holland, Amsterdam.

Glasserman, P. (2003), Monte Carlo Methods in Financial Engineering (Stochas-
tic Modelling and Applied Probability), Springer.

Hull, J. C. (1993), Options, Futures, and Other Derivative Securities (2nd edi-
tion), Prentice-Hall.

Hull, J. & White, A. (1994), ‘Numerical Procedures for Implementing Term
Structure Models II: Two-Factor Models’, Journal of Derivatives 2(2), 37–
48.

Hull, J. & White, A. (1996), ‘Using Hull-White Interest-Rate Trees’, Journal of
Derivatives .

Leippold, M. & Wiener, Z. (n.d.), ‘Algorithms Behind Term Structure Models
of Interest RatesII: The Hull-White Trinomial Tree of Interest Rates.’.

8



Morton, K. W. (1996), Numerical Solution of Convection-Diffusion Problems,
Chapman & Hall, London.

Roos, H.-G., Stynes, M. & Tobiska, L. (1996), Numerical Methods for Singularly
Perturbed Differential Equations, Convection-Diffusion and Flow Problems,
Springer Verlag.

Wilmott, P. (1998), Derivatives: The Theory and Practice of Financial Engi-
neering, Wiley.

9


