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1 Vanilla Equity Option

1.1 Introduction

A vanilla equity option is a financial instrument with the following properties:
The owner of the option has the right (not the obligation) to buy (in the case
of a call option) or sell (in the case of a put option) one equity at the option
expiry date (in case of a European option), at certain dates during the lifetime
of the option (in case of a Bermudan option) or every day during the lifetime
of the option (in case of an American option) for a certain amount (the strike
price) of money. The underlying equity has a given spot price and may pay
discrete dividends at certain dates and may be subject to a continuous equity
yield. One is interested in the fair value of such options at the valuation date
(a possible trade will be settled at the settlement date) due to a given interest
rate curve (yield curve or swap curve) and according to a given volatility curve
which describes the random behavior of the underlying equity. For hedging
purposes, the Greeks are of interest: delta, gamma (first and second derivative
of the option value with respect to the spot price of the underlying), theta (first
derivative of the option value with respect to time), vega and volatility convexity
(first and second derivative of the option value with respect to volatility), delta
vega (mixed derivative with respect to the spot price of the underlying and with
respect to the volatility).

1.2 Vanilla Equity Option under Black Scholes model

By the use of the UnRisk PRICING ENGINE the value of a vanilla equity op-
tion may be calculated in two ways:

• by the use of the analytic formula (i.e. the Black-Scholes formula) which
is valid for the valuation of a European option on a non-dividend paying
equity. If the underlying equity pays discrete dividends, it is market prac-
tice to discount the dividends back to the valuation date (for discounting
the curve (yield curve - equity yield curve) is used), subtract them from
the given spot price of the equity and calculate the value of the European
option due to this new spot price. The analytic solution for the value of
a European call option is given by:

Ct = S0 ∗ e−y(T−t) ∗N(d1)−Xe−r(T−t)N(d2)

where S0 is the given spot price of the equity, X is the strike price of the
option, y is the continuous forward rate (from t to T) per year due to the
given equity yield curve, r is the continuous forward rate (from t to T) per
year according to the given yield curve, T is the expiry date of the option,
t is the valuation date (T-t has to be expressed in years), N(x) is the
cumulative probability distribution for the standard normal distribution
at x, i.e.

N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz
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d1 and d2 are given by

d1 =
log(S0

X ) + (r − y + σ2

2 )(T − t)
σ
√
T − t

d2 =
log(S0

X ) + (r − y − σ2

2 )(T − t)
σ
√
T − t

= d1 − σ
√
T − t

with log being the natural logarithm and σ being the forward volatility
(from t to T) per year according to the given volatility curve. The analytic
solution for the value of a European put option is given by:

Pt = Xe−r(T−t)N(−d2)− S0 ∗ e−y(T−t) ∗N(−d1)

• by the use of Adaptive Integration. Here we give a rough description on
how Adaptive Integration is used to valuate a vanilla equity option:

1. build the equity price grid due to the given number of equity price
grid points.

2. determine the value of the option at the option expiry date T. In case
of a call option the life option value V(S(i),T) (which is equal to the
option value OV(S(i),T) at grid point S(i) is given by

OV (S(i), t1) = max(0, S(i)−X)

3. propagate back in time due to the given maximal length of a time
step (i.e. building the grid in time direction) - we call it maxdt (the
default value in the Mathematica Front End is 30 days). Let us
assume we have got the values at date t2. The next date during the
calculation is (t2 - maxdt) unless there is a key date between (t2 -
maxdt) and t2. A key date is a dividend date, a Bermudan exercise
date, the valuation day or one day after the valuation date. If one or
more key dates are between (t2 - maxdt) and t2, the latest of these
key dates is the next considered date. Let us call this date t1.
The life value V (S(i), t1) is obtained by

V (S(i), t1) = e−r(t2−t1)

∫ ∞
−∞

P [ξ] ∗OV (S(i) + ξ −D(t2), t2)dξ

where P [ξ] is the probability density (in the risk-free world) that S(i)
(given at t1) moves to S(i)+ξ at t2. Under the assumption of the ge-
ometric Brownian motion for the underlying equity price this density
is the density of a lognormal distribution, r, y and σ are given by
the forward values from t1 to t2 according to the corresponding yield
and volatility curves. D(t2) is the amount of the discrete dividend if
t2 is a dividend date and 0 otherwise.
If the option is not exercisable at date t1 (i.e. if the option is Eu-
ropean or Bermudan with t1 not being part of the given Bermudan
exercise schedule), the option value OV (S(i), t1) is given as

OV (S(i), t1) = V (S(i), t1)
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If the option is exercisable at date t1 (i.e. if the option is Ameri-
can or Bermudan with t1 being part of the given Bermudan exercise
schedule), the option value OV (S(i), t1) is given as

OV (S(i), t1) = max(V (S(i), t1), S(i)−X)

in case of a call option and

OV (S(i), t1) = max(V (S(i), t1), X − S(i))

in case of a put option.

4. the propagation backwards in time due to step 3) is performed until
the valuation date t is reached. The option value for equity price S
is given as

OV (S, t) = V (S, t)

if the option is not exercisable at the valuation date.
If the option is exercisable at the valuation date the option value due
to equity price S is given as

OV (S, t) = max(V (S, t), S −X)

in case of a call option and

OV (S, t) = max(V (S, t), X − S)

in case of a put option. The values for delta, gamma and theta can
easily be calculated during the same calculation procedure. For the
calculation of vega, the volatility convexity and delta vega, the given
volatility curve is shifted by ±1% (parallel shifts) and the value and
the delta for these moved volatilities are calculated. If the vega is
not needed it should not be calculated to save computation time.

1.3 Vanilla Equity Option under local volatilities

Vanilla Equity Options under a local volatilty surface can be valuated by the
use Adaptive Integration like in the Black Scholes case. The only difference is,
that the volatility σ in a point (S,t) is taken from the local volatility surface.

1.4 Vanilla Equity Option under Heston Model

By means of the risk neutral valuation formula the price of any option can be
written as an expectation of the discounted payoff of this option.

v(x, t0) = e−r(∆t)EQ[v(y, T )|x] = e−r∆t
∫
R

v(y, T )f(y|x)dy (1)

where v denotes the option value, ∆t is the difference between the initial date
t0 and maturity T, EQ[] is the expectation operator under risk neutral measure
Q, x and y are the state variables at time t0 and T, f(x|y) is the probability
density of y given x and r is the risk neutral interest rate.
Since the probability density function which appears in the integration in the
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original pricing domain is not known explicitely, its Fourier transform, the char-
acteristic function - which is avaliable in the Heston model - is used. Therefore
the problem of option pricing is transformed to the Fourier domain, where the
Fourier transformed integrals can be solved efficiently. In our approach we use a
Fourier cosine expansion in the context of numerical integration als an alterna-
tive for the methods based on FFT, which further improves the speed of pricing
plain vanilla options. The characteristic function of the log-asset price in the
Heston model is given by

Φ(ω) = exp{θκ
σ2

((κ−ρσωi−d)T−2ln(
1− ge−dT

1− g
)+

v0

σ2
(κ−ρσωi−d)

1− e−dT

1− ge−dT
}

d = ((ρσωi− κ)2 − σ2(−iω − ω2))
1
2 ,

g =
κ− ρσωi− d
κ− ρσωi+ d

1.4.1 The COS-method

Numerical integration methods have to solve certain forward or inverse Fourier
integrals. The density and its characteristic function, f(x) and φ(x), form an
example of a Fourier pair.

φ(ω) =

∫
R

eixωf(x)dx (2)

f(x) =

∫
R

e−ixωφ(ω)dx (3)

The main idea of the COS methodology is to reconstuct the whole integral in
(3) from its Fourier-cosine series expansion, extracting the series coefficients
directly from the integrand. The cosine expansion of a function f with support
[0, π] is given by

f(θ) =

∞∑
k=0

′Akcos(kθ) with Ak =
2

π

∫ 2π

0

f(θ)cos(kθ)dθ

where
∑′

denotes that the first term in the summation is weighted by 0.5.
For the treatment of functions with any other support, a change of variables is
required.
Since any L2 function has a cosine expansion, when it is finitely supported, and
the integrands in (3) decay at ±∞ we can truncate the integration range to a
finite interval [a,b] without losing accurancy. We additionaly make use of the
fact that a density function tends to be smooth and therefore only a few terms
in the expansion lead to a good approximation.

Following the ideas of Fang & Oosterlee (2008) the following COS-formula
for a general underlying process holds

v(x, t0) ≈ e−r∆t
N−1∑
k=0

′Re{φ(
kπ

b− a
;x)e−ikπ

a
b−a }Vk (4)
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with

Vk =
2

b− a

∫ b

a

v(y, T )cos(kπ
y − a
b− a

)dy (5)

Denoting the log asset prices by

x = ln(
S0

K
) y = ln(

ST
K

)

with St being the underlying price at time t and K being the strike price the
payoff for european options reads

v(y, T ) = [αK(ey − 1)]+ with α =

{
1 if call option

−1 if put option

The pricing formula can be simplified for the Heston model because the coeffi-
cients Vk can be obtained analytically for plain vanilla options:

V callk =
2

b− a

∫ b

0

K(ey − 1)cos(kπ
y − a
b− a

)dy =
2

b− a
(χ(0, b)− ψ(0, b))

V putk =
2

b− a
(−χ(a, 0) + ψ(a, 0))

with

χk(c, d) :=
1

1 + ( kπ
b−a )2

[cos(kπ
d− a
b− a

)ed − cos(kπ c− a
b− a

)ec

+
kπ

b− a
sin(kπ

d− a
b− a

)ed − kπ

b− a
sin(kπ

c− a
b− a

)c]

ψk(c, d) :=

{
[sin(kπ d−ab−a )− sin(kπ c−ab−a )] b−akπ k 6= 0

d− c k = 0

2 Vanilla FX Option

2.1 Introduction

An FX object represents the foreign exchange (FX) rate between 2 given cur-
rencies. An FX object is given by a spot rate (the FX rate at the considered
date) (e.g. 1.55), a given foreign currency (e.g. GBP) and a domestic currency
(e.g. EUR). The spot FX rate is the price for one unit of the foreign currency,
expressed in units of domestic currency. In the risk-free world, the time devel-
opment of the FX rate depends on the interest rate curves in the foreign and in
the domestic currency.
A vanilla FX (foreign exchange) option is a financial instrument with the fol-
lowing properties: The owner of the option has the right (not the obligation)
to buy (in case of a call option) or sell (in case of a put option) 1 unit of the
foreign currency at the option expiry date (in case of a European option), at
certain dates (in case of a Bermudan option) or every day (in case of an Amer-
ican option) for a certain amount (the strike FX rate) of foreign currency. The
underlying FX has a given spot FX rate. One is interested in the fair value
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of such options at the valuation date (a possible trade will be settled at the
settlement date) due to a given interest rate (yield curve or swap curve) and
according to a given volatility curve which describes the random behavior of the
underlying FX rate. For hedging purposes, the Greeks are of interest: delta,
gamma (first and second derivative of the option value with respect to the spot
FX rate of the underlying currency), theta (first derivative of the option value
with respect to time), vega and volatility convexity (first and second derivative
of the option value with respect to volatility), delta vega (mixed derivative with
respect to the spot FX rate of the underlying currency and with respect to the
volatility).

2.2 Vanilla FX Option under Black Scholes Model

By the use of the UnRisk PRICING ENGINE the value of a vanilla FX option
may be calculated in two ways:

• by the use of the analytic formula (i.e. the Black-Scholes formula) which
is valid for the valuation of a European option on an FX.
The analytic solution for the value of a European call option is given by:

Ct = F ∗ e−rf (T−t) ∗N(d1)−Xe−r(T−t)N(d2)

where F is the given fx spot price of the equity, X is the strike price of
the option, rf is the continuous forward rate (from t to T) per year due
to the given domestic yield curve, r is the continuous forward rate (from
t to T) per year according to the given yield curve, T is the expiry date
of the option, t is the valuation date (T-t has to be expressed in years),
N(x) is the cumulative probability distribution for the standard normal
distribution at x, i.e.

N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz

d1 and d2 are given by

d1 =
log( FX ) + (r − rf + σ2

2 )(T − t)
σ
√
T − t

d2 =
log( FX ) + (r − rf − σ2

2 )(T − t)
σ
√
T − t

= d1 − σ
√
T − t

with log being the natural logarithm and σ being the forward volatility
(from t to T) per year according to the given volatility curve. The analytic
solution for the value of a European put option is given by:

Pt = Xe−rd(T−t)N(−d2)− F ∗ e−rf (T−t) ∗N(−d1)

• by the use of Adaptive Integration.
Here the steps are the same as for vanilla equity options with the foreign
interest rate replacing the continuous equity yield, the domestic interest
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rate replacing the interest rate, the spot FX rate replacing the spot price
of the equity and the strike FX rate of the vanilla FX option replacing the
strike price of the vanilla equity option. Discrete dividends do not occur
in FX options.

2.3 Vanilla FX Option under local volatility

Vanilla FX Options under a local volatilty surface can be valuated by the use
Adaptive Integration in the same way as in the Black Scholes case. We only need
to replace the dividend yiels by the foreign interest rate and take the volatility
σ in a point (S,t) from the local volatility surface.

3 Equity Barrier Option

3.1 Introduction

In section 1, we have dealt with vanilla equity options. This section is devoted
to equity barrier options. Barrier options become worthless if a given barrier
is passed by the equity price (out-options), or they start to exist when a given
barrier is passed (in-options).
To be more specific, in case of a knock-out option, the option stays alive as long
as the equity price is lower (in case of an up&out option) or higher (in case
of a down&out option) than a certain evel (the barrier). In case of a knock-in
option, the option starts to exist as the equity price reaches a certain level from
below (in case of an up&in option) or from above (in case of a down&in option).
If the option is knocked out (in case of a knock-out option) or never knocked
in (in case of a knock-in option) the investor may get a certain fixed amount of
money, the so called rebate, which may be paid as soon as the knock-out occurs
(immediately) or at the expiry date (deferred). One is interested in the fair
value of such an option at the valuation date (a possible trade will be settled
at the settlement date) due to given interest rates (yield curve or swap curve)
and due to a given volatility curve which describes the random behavior of the
underlying equity.

3.2 Equity Barrier Option under Black Scholes model

By the use of the UnRisk PRICING ENGINE the value of an equity barrier
option may be calculated in two ways:

• by the use of the analytic solution which is valid for the valuation of
a European option on a non-dividend paying equity, provided the yield
curve and the volatility curve are flat. If a rebate shall be taken into
account by the analytic formula , it must be paid immediately after the
knock-out. Let A, B, C, D, E, F be defined as follows (η and φ are 1 or
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-1, depending on the option types, see below):

A = φSe−y(T−t)N(φx1)− φXe−r(T−t)N(φx1 − φσ
√
T − t)

B = φSe−y(T−t)N(φx2)− φXe−r(T−t)N(φx2 − φσ
√
T − t)

C = φSe−y(T−t)(
H

S
)2(µ+1)N(ηy1)− φXe−r(T−t)(H

S
)2µN(ηy1 − ησ

√
T − t)

D = φSe−y(T−t)(
H

S
)2(µ+1)N(ηy2)− φXe−r(T−t)(H

S
)2µN(ηy2 − ησ

√
T − t)

E = Ke−r(T−t)[N(ηx2 − ησ
√
T − t)− (

H

S
)2µ]N(ηy2 − ησ

√
T − t)

F = K[(
H

S
)µ+λN(ηz) + (

H

S
)µ−λN(ηz − 2ηλσ

√
T − t)]

where S is the spot price of the equity, X is the strike price of the option,
H is the barrier level, K is the rebate, r is the continuous interest rate
(constant), y is the continuous equity yield (constant), σ is the volatility
of the underlying equity (constant), T is the expiry date, t is the valuation
date and N(x) is the cumulative probability distribution for the standard
normal distribution at x, i.e.

N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz

The other quantities are given by

x1 =
ln( SX )

σ
√
T − t

+ (1 + µ)σ
√
T − t

x2 =
ln( SH )

σ
√
T − t

+ (1 + µ)σ
√
T − t

y1 =
ln(H

2

SX )

σ
√
T − t

+ (1 + µ)σ
√
T − t

y2 =
ln(HS )

σ
√
T − t

+ (1 + µ)σ
√
T − t

z =
ln(HS )

σ
√
T − t

+ λσ
√
T − t

µ =
r − y − σ2

2

σ2

λ =

√
µ2 +

2r

σ2

The values of the different equity barrier options may then be calculated
as (see, e.g., [Haug])
Up-and-out call with S < H:

C(up&out, X > H) = F, η = −1, φ = 1

C(up&out, X < H) = A−B + C −D + F, η = −1, φ = 1
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Down-and-out call with S > H:

C(down&out, X > H) = A− C + F, η = 1, φ = 1

C(down&out, X < H) = B −D + F, η = 1, φ = 1

Up-and-out Put with S < H:

P (up&out,X>H) = B −D + F, η = −1, φ = −1

P (up&out,X<H) = A− C + F, η = −1, φ = −1

Down-and-out put with S > H:

P (down&out,X>H) = A−B + C −D + F, η = 1, φ = −1

P (down&out,X<H) = F, η = 1, φ = −1

Up-and-in call with S < H:

C(up&in,X>H) = A+ E, η = −1, φ = 1

C(up&in,X<H) = A− C +D + E, η = −1, φ = 1

Down-and-in call with S > H:

C(down&in,X>H) = C + E, η = 1, φ = 1

C(down&in,X<H) = A−B +D + E, η = 1, φ = 1

Up-and-in put with S < H:

P (up&in,X>H) = A−B +D + E, η = −1, φ = −1

P (up&in,X<H) = C + E, η = −1, φ = −1

Down-and-in put with S > H:

P (down&in,X>H) = B − C +D + E, η = 1, φ = −1

P (down&in,X<H) = A+ E, η = 1, φ = −1
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• by the use of Adaptive Integration
The steps are the same as for vanilla equity options, however the transition
probability (in the risk-free measure) must be split into two parts: If p(s, ξ)
is the probability density of S (at t1) moving to S+ξ at t2 (both assumed
to be below the barrier in the case of an up-and-out option), then

p(S, ξ) = p1(S, ξ) + p2(S, ξ)

with p1 being the density of S moving to S+ξ−D(t2) without hitting the
barrier and p2 being the density of S going to S + ξ −D(t2) with hitting
the barrier.
For S(i) < H the life value is then obtained by

V (S(i), t1) = e−r(T−t)[
∫H−S(i)

−∞ p1(S(i), ξ) ∗OV (S(i) + ξ −D(t2), t2)dξ

+
∫H−S(i)

−∞ p2(S(i), ξ) ∗ κdξ +
∫∞
H−S(i)

p(S(i), ξ)κdξ]

For S(i) ≥ H the life value is then obtained by

V (S(i), t1) = κ

with κ is the rebate if the rebate is paid immediately, or the discounted
rebate (from expiry to t1) if the rebate is paid at the expiry date.
Some remarks:

1. For the deviation of p1, the reflection principle has to be applied. For
details see, e.g., Albrecher et al. (2009).

2. In the implementation of Adaptive Integration, the rebate (if any) is
paid only at dates hit by the timestepping scheme.

3. In the densities p1 and p2 flat forward rates and flat forward volatil-
ities (from t1 to t2) are used. If the maximal length of the time step
decreases, the actual curves (yield and volatility) are matched better.
See below for an example on the influence of the time step.

4. There are some additional thoughts for knock-in options: Assume we
have an up-and-in option and a price S below the barrier. Then there
are two option values at S, the value of the option not being knocked
in yet, and the value of the option having already been knocked in
(this is the vanilla value). As soon as the two option values are
introduced, the rest can be done in a similar way to the knock-out
option.

3.3 Equity Barrier Option under local volatility

Equity Barrier Options under a local volatilty surface can be valuated by the
use Adaptive Integration like in the Black Scholes case. The only difference is,
that the volatility σ in a point (S,t) is taken from the local volatility surface.

3.4 Equity Barrier Option under Heston Model

In contrast to the Black Scholes model where we have analytic formulae for the
prices of barrier options, in the Heston model we have to use numerical methods
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to price these options. In the UnRisk PRICING ENGINE we approximate
the stochastic differential equation using a discrete Euler sheme. To generate
correlated random variables we choose Z1 and Z2 independently from a standard
normal distribution N(0,1) and calculate ∆W 1

t and ∆W 2
t for a given time step

∆t as

∆W 1
t = Z1

√
∆t

∆W 1
t = (ρZ1 +

√
1− ρ2Z2)

√
∆t

Starting from S0 and v0 the discrete paths of the Monte Carlo simulation can
be calculated iteratively using

Si = Si−1 + (rd − rf )Si−1∆t+
√
vi−1Si−1∆W 1

t

vi = vi−1 + (κ(θ − vt−1)∆t+ σ
√
vi−1∆W 2

t

where Si = S(i ∗∆t) and vi = v(i ∗∆t)
When we consider continously monitored barrier options, the hitting time error
using a discrete Monte Carlo method is given by O(1/

√
N), if we use N time

steps. The convergence is rather slow, because the exact path of the underlying
asset may hit the barrier between the discrete time points of the discrete Monte
Carlo sheme. To reduce the hitting time error near the barrier, we use a random
variable which takes the conditional probabilty of hitting the barrier between
two discrete time points into account.
The payoffs of discretely monitored Barrier option with strike K, constant Bar-
rier H and maturity T can be written as

up and out: (Φ(ST −K))+1maxi∈{1,...,n}Sti
<H
,

up and in: (Φ(ST −K))+1maxi∈{1,...,n}Sti
>H
,

down and out: (Φ(ST −K))+1mini∈{1,...,n}Sti
>H
,

down and in: (Φ(ST −K))+1mini∈{1,...,n}Sti
<H
,

where Φ = ±1 determines if the option is a call(+1) or a put(-1) and ti with
0 < t1 < ... < tn = T are the barrier monitoring dates. Since the barrier option
value for a path in the Monte Carlo simulation becomes worthless, if the price
of the underlying stock exeeds the Barrier level before time T, we only consider
paths in our simulation, which stay in the allowed region.

4 FX Barrier Option

FX Barrier Options can be valuated by the UnRisk PRICING ENGINE in two
ways:

• by the use of the analytic solution which is valid only for European FX
barrier options and flat (domestic, foreign) interest rates and flat volatil-
ities. It is also just valid if the rebate is paid as soon as the option is
knocked-out (i.e. as soon as the FX rate moves across the barrier level).
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The closed form solutions are obtained by replacing in the formulas for
equity barrier options, the continuous equity yield by the foreign interest
rate and the spot price of the equity by the spot FX rate.

• by the use of Adaptive Integration.
Again, in the algorithm for equity barrier options, the continuous equity
yield is replaced by the foreign interest rate. When Adaptive Integration
is used, the interest rates (domestic, foreign) and the volatility curve need
not to be flat any more.

5 Interpretation of the Greeks

5.1 Greeks for Equity Derivatives

The UnRisk PRICING ENGINE uses the following scaling and units:

• Value: in currency units

• Delta: unit 1. If the spot price changes by dS, the Value changes by
Delta ∗ dS (first order approximation)

• Gamma: unit 1
currency . If the spot price changes by dS, then the value

changes by Delta ∗ dS + 1
2Gamma ∗ (dS)2 (second order approximation)

• Theta: Change of the option value if the spot price remains unchanged
and the valuation and settlement date are shifted by one business day.

• Vega: Change of the option value if the volatility curve is shifted by one
percent.

• Volatility Convexity: Second order change if the volatility is shifted by
one percent: V (σ+dσ) ≈ V (σ)+Vega∗dσ+ 1

2Volatility Convexity∗(dσ)2

• Delta Vega: Change of Delta if the volatility is shifted by one percent.

5.2 Greeks for FX Derivatives

The UnRisk PRICING ENGINE uses the following scaling and units:

• Value: in currency units

• Delta: unit 1. If the spot fx price changes by dF, the Value changes by
Delta ∗ dF (first order approximation)

• Gamma: unit 1
currency . If the spot price changes by dF, then the value

changes by Delta ∗ dF + 1
2Gamma ∗ (dF )2 (second order approximation)

• Theta: Change of the option value if the spot price remains unchanged
and the valuation and settlement date are shifted by one business day.

• Vega: Change of the option value if the volatility curve is shifted by one
percent.
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• Volatility Convexity: Second order change if the volatility is shifted by
one percent: V (σ+dσ) ≈ V (σ)+Vega∗dσ+ 1

2Volatility Convexity∗(dσ)2

• Delta Vega: Change of Delta if the volatility is shifted by one percent.
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