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1 One Factor Interest Rate Model

Within the UnRisk PRICING ENGINE, the value of interest rate instruments
under a 1 factor interest rate model is calculated by the use of Adaptive In-
tegration. In the following we give a rough description of the algorithm for a
callable / putable fixed rate bond (we neglect the incorporated call / put notice
feature in order to keep the formulation as understandable as possible):

1. build the spot rate grid due to the given number of spot rate grid points.

2. at the maturity date T" the dirty value of the callable / putable fixed rate
bond at a spot rate r(4) is given as the dirty value of the underlying fixed
rate bond (callability and putability are assumed not to be allowed at the
maturity date)

CPV(r(i),T) =R+ CF(T)

where R is the final redemption of the bond and CF(T) is the cashflow
at the maturity date (0 if there is no coupon at maturity).

3. propagate back in time due to the given maximal length of a time step (i.e.
building the grid in time direction) - we call it maxdt (the default value
in the Mathematica Front End is 30 days). Let us assume we have got
the dirty callable / putable bond values at date t2. The next considered
date t1 (t1 < t2) is given by max(date maxdt days before ¢2, coupon date
before t2, call date before 2, put date before ¢2, valuation date, settlement
date, in case of a General Hull & White model: a date at which one of the
model parameters changes). Therefore it is possible to hit all key dates
- coupon dates, call dates, put dates, valuation date, settlement date, in
case of a General Hull & White model: the dates at which the model
parameters change. The life value LBV (r(i),t1) of the fixed rate bond
(i.e. the value of the fixed rate bond under the assumption that it is not
called at t1 and between t1 and ¢2) is given as:
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LBV (r(i),tl) = DF(r(i),&,t1,t2) « P(§)CPV (r(i) + &,t2)d§ + CF(t1)
where DF(r(i), &, t1, t2) is the discount factor form ¢2 to t1, provided
the interest rate at ¢1 is r(i) and at t2 it is () + &, and P(§) is the
probability density that r(i) (given at ¢1) moves to r() + £ at t2. CF(¢1)
is the coupon at t1 (0 if there is no coupon at t1). The dirty value of the
callable / putable fixed rate bond is then given as

CPV (r(i),t1) = min((Call+caccrued), max(LBV (r(i), t1), (Put+paccrued)))

if the fixed rate bond is callable and putable at t1. caccrued is the accrued
interest at t1 if the call accrued switch is set to True, 0 otherwise. paccrued
is the accrued interest at t1 if the put accrued switch is set to True, 0
otherwise.

CPV(r(i),t1) = max(LBV (r(i),t1), (Put + paccrued))
if the fixed rate bond is just putable at t1.
CPV (r(i),t1) = min((Call + caccrued), LBV (r(i),t1))



if the fixed rate bond is just callable at t1.
CPV(r(i),t1) = LBV (r(i),t1)
if the fixed rate bond is neither callable nor putable at ¢1.

4. propagate backwards in time until the settlement date ts is reached. Be-
tween settlement date and valuation date we proceed as above but without
discounting in the integral.

The option value OV (r,t) is given by (BV (r(i),t) is the dirty value of the
underlying fixed rate bond)

OV (r,t) = CPV(r,t) — BV (r,t)

Note that, e.g., for a bond which is callable but not putable the option value
is negative (as it is seen from the investor’s point of view).

2 Hull & White 2 Factor Model

The value of interest rate instruments under a Hull & White 2 factor model
is calculated by the use of Finite Elements with Streamline Diffusion. In the
following the valuation algorithm for a callable / putable general steepener is
presented:

Step 1: Determination of the time discretization: Based on the maximal
time step and on the given key dates the time discretization is determined
in a way such that the actual time step does not exceed the maximal time
step maxdt (the default value in the Mathematica Front End is 20 days)
and all key dates are hit. Key dates can be coupon set dates, coupon
dates, call dates, put dates, the settlement date, the valuation date, or a
date at which one of the model parameters changes.

Step 2: Determination of the space discretization: Depending on the
volatilities of the two factors and on the lifetime of the considered instru-
ment the size of the discretization grid is determined as it is described in
the paper "Numerical Methods in UnRisk” in section ”Streamline Diffu-
sion” (each direction represents one factor). The discretization grid itself
consists of rectangles. The number of rectangles in each direction does
not exceed the maximal number given by the function call option Numer-
icalParameters2D, but it may be less if the required accuracy is obtained.

Step 3: Determination of starting values: Calculate the dirty value of the
callable / putable general steepener C PV (r,u,T) at maturity date T in
a grid point (r(7), u(i)). The steepener is assumed neither to be callable
nor to be putable at the maturity date, therefore, the dirty value of the
callable / putable steepener C PV (r,u,T) is given by the dirty value of
the underlying steepener SV (r,u,T):

CPV (r(i),u(),T) = SV (r(i),u(i), T)
The dirty value of the underlying steepener is given by:
SV (r(i),u(i),T) = R+ CF(r(i),u(s),T)
where R is the final redemption of the steepener and CF(r(i),u(i), T) is



e an already known cashflow (if T is a coupon date and the correspond-
ing set date is before the valuation date)

e a cashflow defined by the specified coupon (if T' is a coupon set date)

e 0 otherwise.
Step 4 is repeated (tj41 = t;) until the settlement date is reached!

Step 4: Propagate back in time: Under the assumption that we know the
dirty value CPV{(j + 1) at time ¢;4; (starting with ¢;.; = T), we want
to determine the value at time ¢;. The time step At/ =t;,1 —t; is given
by the time discretization determined at the beginning of the algorithm.
To calculate the value at time ¢; means to solve the following partial
differential equation for V7 using the method of Finite Elements including
Streamline Diffusion as upwind technique:
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The life value of the steepener at time ¢; in (r(¢),u(¢)) (i-e., the value of
the steepener under the assumption that it is not called at ¢; and not
called between t; and t;1) is then given by:

(LV7)(r (i), u(@)) = (V7)) (r(@), u(i)) + (CF7)(r(i), u(d)),
where (CF7)(r(i),u(i)) is

e an already known cashflow (if ¢; is a coupon date and the correspond-
ing set date is before the valuation date)

e a cashflow defined by the specified coupon (if ¢; is a coupon set date)

e ( otherwise.
The dirty value of the callable / putable steepener is given by:

(CPV)(r(i),u()) = min(Call, max((LV?)(r(i), u(i)), Put))



if the steepener is callable and putable at ¢,
(CPVI)(r(i),u(i)) = max((LV7)(r(),u(i)), Put)
if the steepener is just putable at t;,
(CPVI)(r(i),u(i)) = min(Call, (LV?)(r(i), u(i)))
if the steepener is just callable at t;,
(CPVI)(r(i), u(i) = (LV7)(r(i), u(i))

if the steepener is neither callable nor putable at ¢;.

Step 4 is repeated (t;11 = t;) until the settlement date is reached!

Step 5: We know the rates r and u(= 0) at the valuation date ¢, but we want to
know the dirty value of the bond at the settlement date. In order to obtain
this value we have to solve the following problem between the settlement
date and the valuation date:
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This is in principle the same problem as in Step 4, but without dis-
counting. The dirty value of the callable / putable general steepener
(CPV7)(r(i),u(i)) is then calculated as described in Step 4.

The option value OV (r,t) is given by
OV (r,u,t) = CPV(r,u,t) — SV (r,u,t).

SV (r,u,t) is the dirty value of the underlying general steepener.

3 Two 1 Factor Interest Rate Models

The value of interest rate instruments under two General Hull & White interest
rate models is calculated by the use of Finite Elements with Streamline Diffu-
sion. In the following the valuation algorithm for a callable / putable quanto is
presented:



Step 1: Determination of the time discretization: Based on the maximal
time step and on the given key dates the time discretization is determined
in a way such that the actual time step does not exceed the maximal time
step maxdt (the default value in the Mathematica Front End is 20 days)
and all key dates are hit. Key dates can be coupon set dates, coupon
dates, call dates, put dates, the settlement date, the valuation date, or a
date at which one of the model parameters changes.

Step 2: Determination of the space discretization: Depending on the
volatilities of the two factors and on the lifetime of the considered instru-
ment the size of the discretization grid is determined as it is described
in the paper ”‘Numerical Methods in UnRisk”’ in chapter ”‘Streamline
Diffusion”’ (each direction represents one factor). The discretization grid
itself consists of rectangles. The number of rectangles in each direction
does not exceed the maximal number given by the function call option
NumericalParameters2D, but it may be less if the required accuracy is
obtained.

Step 3: Determination of starting values: Calculate the dirty value
QV(rl,r2,T) of the considered quanto at the maturity date T in a grid
point (r1(7), r2(z)). The quanto is assumed neither to be callable nor to
be putable at the maturity date, therefore, the dirty value of the callable
/ putable quanto CPQV (rl,r2,T) is given by:

CPQV (r1(i), r2(i), T) = QV (r1(i),72(i), T)

Step 4: Propagate back in time: Under the assumption that we know the
dirty value
CPQVIT! at time t;41 (starting with ¢;41 = T, we want to determine
the value at time ¢;. The time step At/ = t;1 —¢; is given by the time
discretization determined at the beginning of the algorithm. To calcu-
late the value at time t; means to solve the following partial differential
equation for V7 using the method of Finite Elements including Streamline
Diffusion as upwind technique:
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The life value of the quanto (i.e., the value of the quanto under the as-
sumption that it is not called at ¢; and not called between t; and ¢;41) at
time ¢; in (r1(7), r2(¢)) is given by:

(LQV)(r1(i),r2(i)) = (V7)(rl(q), r2(i)) + (CF7)(r1(q), r2(i)),
where CF(r1(i),r2(i)) is

e an already known cashflow (if ¢; is a coupon date and the correspond-
ing set date is before the valuation date)

e a cashflow defined by the specified coupon (if ¢; is a coupon set date)

e ( otherwise.
The dirty value of the callable / putable quanto is given by:
(CPQV?)(r1(i),r2(i)) = min(Call, max((LQV?)(r1(i),r2()), Put))
if the quanto is callable and putable at ¢;,
(CPQV7)(r1(i),r2(i)) = max((LQV7)(r1(i), r2(i)), Put)
if the quanto is just putable at ¢;,
(CPQV7)(r1(i),r2(i)) = min(Call, (LQV?)(r1(i), r2(3)))
if the quanto is just callable at t;,
(CPQVT)(r1(i),r2(i)) = (LQV7)(r1(i), r2(i))

if the quanto is neither callable nor putable at t;.

Step 4 is repeated (t;11 = t;) until the settlement date is reached!

Step 5: We know the spot rates r1 and 72 at the valuation date ¢, but we want
to know the dirty value of the quanto at the settlement date. In order
to obtain this value we have to solve the following problem between the
settlement date and the valuation date:
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This is in principle the same problem as in Step 4, but without discounting.
The dirty value of the callable / putable quanto CPQV7(r1(i),r2(i)) is
then calculated as described in Step 4.

The option value OV (r1,r2,t) is given by:

OV (rl,r2,t) = CPQV(rl,r2,t) — QV(rl,r2,t)

4 LIBOR Market Model

The value of a financial instrument under a LIBOR market model is calculated
by the use of Monte-Carlo method. In the following the valuation algorithm is
presented step-by-step:

Step 1: Determination of the time grid: The time grid is the set of all
key dates, the valuation as well as the maturity date. Key dates can be
coupon set dates, observation dates, swap dates (of all product rates),
coupon dates, call dates, put dates and the settlement date (if the date is
not equal to the valuation date)

T = {to,t1,...,tn} withty = valuation date

Step 2: forward LIBOR rates setup: If the last key date is before the ma-
turity date the number of forward rates is equal to the number of key
dates, otherwise the number of forward rates is equal to the number of
key dates minus one. The first rate expires at t; matures at to, the second
foward rate expires at t5 and matures at t3 and so on until the last forward
rate expires at ty_1 and matures at ty.

Step 3: Determination of the MC time discretization: Based on the max-
imal time step and on the given time grid the Monte-Carlo time discreti-
sation (Brigo & Mercurio (2006))

TMC = {to, 79 131, 4, 1170, Lttt} withm < N

is determined in a way so that the actual time step does not exceed the
maximal time step maxdt (the default value in the Mathematica Front
End is 100 days) and all dates of the time grid until the maturity date are
hit.

Step 4: Determination of sigma (¢) and rho (p): Depending on the time
grid, on the MC time grid and on the model parameters the volatility and
correlation matrices are calculated using the volatility function

or(t) = Yp([a(Tk-1 — t) + b] eXp_C(T’“*l_t) +d)
and the correlation function

_ —po min(i,5)\|;_ .+
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Step 5: Determination of starting values: For each foward LIBOR rate
the current value is used.

Step 6: Monte-Carlo valuation: Using the Euler scheme for discretisation
of (2) from the paper ”Calibration of Interest Rate Models” (LIBOR mar-
ket model section) the following n-dimensional process has to be simulated
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i1
dependent draws from the multivariate normal distribution are gener-
ated using either the MersenneTwister random number generator or Low-
discrepancy sequences with the Brownian bridge method (Jaeckel (2002)).
In both cases principal component analysis is used to reduce the dimension
of driving factors (see Fries, appendix). At each expiry date the dimen-
sion of the simulated forward LIBOR rates decreases by one, resulting in
a matrix with the form

where Z,(tM) — Z,(tMC) is \/tM] — tMEN(0, p) distributed. The in-
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Every column contains all necessary information to compute all product
rates (forward and/or swap rates). The numeraire process at time t,, is
the product of all LIBOR rates up to time ¢,,_1

The sum of all discounted coupons (set at the coupon set date, discounted
to the settlement date) and the discounted redemption rate is the dirty
value of the product without call or put rights:

DV = i CV (t;)/N(t;) + RR/N (t,,)

i=1




Step T: callability / putability: Extending the least square Monte Carlo
method for American options (see Longstaff and Schwartz 2002) we com-
pare for every call/put date (and every run) the regression value of dis-
counted future gains (losses) to the regression value of current gains (losses).
If the latter is greater than the first regression value we call /put the option,
otherwise we do nothing.
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